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Abstract

The fault tolerant characteristics of analog-VI.Sl artificial ncural network (with
32 neurons and 532 synapses) chips are studicd by exposing them to high energy
clectrons, high energy protons, ” and gammaionizing radiations under biased and
unbiased conditions.  The biased chips became nonfunctional after receiving a
cumulative dose of less than 20 krads, while the unbiased chips only started to show
degradation with a cumulative dose of over 100 krads. As the total radiation dose
increased, all the components demonstrated  graceful degradation.  The analog
sigmoidal function of the ncuron became steeper (increase in gain), current leakage
from tile synapses progressively shifted the sigmoidal curve, and the digital memory of
the synapses and the memory addressing circuits began to gradually fail, From these
radiation cxperiments, W € can learn how to modify certain designs of the ncural
network electronic hardware without using radiation- hardening techniques to increase

its reliability and faulttolerance.




Chapter 1

Introduction

Significant progress has been made in the research and development of artificial
neural networks within the past few years. Inspired by biological” systems, artificial
ncural networks are highly parallel data processing circuits and are particularly suited
to “lecarn” ill-defined or fuzzy input-output relationships and to perform adaptive
interpolations [ 1].

With the recent technological advances, popularity of artificial neural networks
has grown rapidly, and it has found widespread applications in a variety of fields.
Some of the operations that neural networks can perform include: classification, where
aninput pattern is passedto the network, and the network producesa representative
class as output; pattern matching, where aninput pattern is passedto the network, and
the network produces the corresponding output pattern; pattern completion where an
incomplete pattern is passed to the network, and the nctwork produces an output
pattern hgt has the missing portions of (he input pattern filled in; noise removal, where
a NOISC-COTTLypred input pattern is presented to the network, and the network removes
some (or all) of the noise and produces a cleaner version of theinput pattern as output;
optimization, wherc aninput pattern representing the initial values for a specific

optimization problem is presented to the network , and the network produces a set of




variables that represents a solution to the problem; and control, where aninput pattern
represents the current state of a controller and the desired response for the controller,
and the output is the proper command scquence that will create the desired response
[2]. Thus, the diversity of applicati ons of artificial neural networks allows them to be
applied to problems incngineering control systems, spcech recognition, computer
vision (e.g. optical character recognition andimage processing), financial market
analysis, and weather forecasting, to name a few examples [1]. Neural networks are
capable of easily performing many tasks that conventional regression techniques and
traditional artificia intelligence systems find difficult or impossible to solve.

“1’here has also been a high level of interest in the applicatio n of artificial neural
networks to the ficld of medicine. Iimage processing neural networks have been used to
diagnose hepatic masses [3,4]and breast tumors [5].  Rescarchers aso have trained
mural networks to interpret ventilation -perfusion (V/Q) lung scans by exposing it to
100 consccutive V/Q scans with pulmonary angiographic corrclation |6]. It was then
used to classify 28 new scans without 4CCCsS 10 the angiographic correlation. When the
resultant classifications were compared with the rankings of an experienced observer
who also read the scans without knowledge of the corrclative angiographic data, the
network significantly outperformed the experienced observer inthe prediction of the
likelihood of a pulmonary embolism.

Some researchers have begunto realize that the clinical in formation generated

in the high dependency environment (intensive care unit, operating room, emergency
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room, recovery room) can actually be interpreted as a “patiern,” with each unique
combination of symptoms, signs, and laboratory results representing a different clinical
scenario.

One suchrescarcher has created a ncural network to diagnose myocardial
infarction in persons reporting to the emergency room complaining of anterior chest
pain 17,81. A neural network was trained to i nterpret history, physical examination
findings, and specific emergency room clectrocardiogram (f :CG) findings and to predict
the probability that the paticnt had suffered a1nyocardialiti farction, The diagnostic
performance of the artificial neural network was compared with the opinion of the
attending emergency room physician. The physician diagnosed myocardial infarction
with a sensitivity and specificity of 77% and 84%, respectively, whereas the neural
network performed with a sensitivity and specificity of 97.2% and 96.2%. This is a
result of the neural network learning from examples. Subsequent examination of the
trained network revealed that it predicted myocardial infarction by placing (diagnostic
importance on clinical variables thathad notbe enshown previously tobe highly
predictive of infarction.

These examples show that artificial neural networks have the ability to support
medical decisions. Thus far, the types of network architectures and learning algorithms
uscd by biomedical rescarchers have been relativel y siniple. *1'0 extend this technology

to greater and more complicated medical applications, future research needs to



investigate the propertics and behavior of complex, state of the art, application-specific
network topologies.

The potential benefits of neural nets extend beyond the high computation rates
provided by massive parallelism. Neura nets typically provide a greater degree of
robustness or faulttolerance than von Neumann digital sequential computers since
there arc many more processing nodes, each with primarily local connections, and the
information is CO(1C(1 distributively on weighted synaptic connections or links, Damage
to afcw nodes or links thus need not impair overall performance significantly.

Mostneural network learning algorithms also adapt their synaptic connection
weights in time to improve performance based onthe current results. ThisiSa major
focus of neural network research, and the ability to adapt and cent inuc learning is
essential. Adaptation also provides a degree of robustness by compensating for minor
variations in characteristics of neurons.  Traditional statistical techniques are not
adaptive, typically processing al training data simultancously before being given new
data. Neural network classifiers are also non-parametric and make weaker assumptions
concerning the shapes of underlying distributions than traditional statistical classifiers.
They may thus prove to be more robust when distributions arc generated by nonlinear
processes and are strongly non-Gaussian.

Recent advances in ncural networks have increased the level of interest for

critical applications, such as deployment in space, for military applications, in high




encrgy physics laboratories, in chemical processing industries, or in hospitals where
reliable performance and longevity is a requirement.

The purpose of this research is to demonstrate the faulttolerant  characteristics
of analog neural network VI .S1 chips. Exposure to ionizing radiation was performed in
order to study the behavior and graceful degradation of the electronic hardware.

in the next chapter, before introducing the artificial neural network chip, we
give a brief definition and background on the artificial ncural network model and its
derivation from the biologica model. Chapter 3 will describe the experiments
conducted on the electronic hardware, including the three types of ionizing radiation
sources, chip setup, and the tests 1o be performed to study the degradation on various
components Of the chips. The results of the radiation experiments are given in Chapter
4, providing a detailed (inscription of the effects of radiation at different cumulative
doses on the performance of the chip. 'The results arc compiled and analyzed in
Chapter 5. We elaborate on the mechanisms responsible for different degradation
effects. Chapter 6 provides a conclusion drawn from ourexperiments and a direction

charted towards future rescarch.




Chapter 2

Neural Networks

Although there are numerous ways to define artificial neural networks,
Kohonen|9] has attempted to state it with the following gencral definition:

“The artificial neural networks™ are massively parallel interconnected

networks of simple (usually adaptive) elements and their hierarchical

organizations which are intended to interact with the object of the real

world in the same way as the biological nervous systems do.

The structure of artificial neural networks are modeled after the organization of
the human nervous system, specifically the human brain.  They are composed of
elements that performin amanner that is analogous to the most clementary functions of
the biological ncuron.  Although the resemblanceis superficial, artificial neural
net works as physical cellular networks exhibit such brainlike characteristics as their
ability to learn from experience, generalize ontheir knowledge, perform abstraction,
and make errors, which are all more characteristic of aniinal behavior than that of
conventional digital computers.

T() introduce the neura network hardware, wc firstexplore ina simplistic way

the biological equivalent before tracing artificial neural networks and their electronic

embodiment from the “connectionist™ point of view rather than biological.




2.1 Biological Neural Networks

A human brain contains over one hundred billion computing elements called
neurons [ 1 0]. Exceeding the number of stars in our Milky Way galaxy, these neurons
are the fundamental building blocks of the biological neural network, the nervous
system. A neuron is an elementary nerve cell which typically has three major regions:
the cell body (or soma), the axon, and the dendrites.

The cell body, similar to any other cell, conducts maintenance activities for the
neuron. 1lowever, the outer membrane of the 1curon’s cell body also has the unique
capability of generating ncrve impulses called action potentials. The axon is a long
cylindrical fiber (hat serves as a transmission linc to carry the impulses from the cell
body. The end part of anaxon splits into a fine arborization where each branch
terminates in a small end bulb almost touching the dendrites of the neighboring
neurons. Dendrites form adendritic tree, avery fine bush of thin fibers emanating from
the cell body. Functionall y, the dendrites receive informat ion from the axons of
ncighboring ncurons.

This axon-dendrite contact organ is called a synapse and is where the neuron
introduces its signal to the neighboring neuron. ‘1 here arc perhaps one hundred trillion
synapses forming the interconnections within the biological neural network [10]. The
signals reaching a synapse andreccived by dendrites are electrical impulses. But, the
interncuronal transmission arc usually affected by the release of chemical transmitters at

the synapse, where the axon terminals generate the chemical that affects the receiving



neuron’s dendrite. Each neuron is connected 1o thousands of other neurons in this
way.

From there, the signals are passed on to the cell body of the receiving neuron
which either generates an impulse to its axon to be passed on to succeeding neurons, or
produces no response. The neuron’s response is gencratedif the total potential of its
membran ¢ reaches above a certain tircsiol( level. The memb rane can be considered as
a shell, which aggregates the magnitude Of the incoming signals over ashort time
interval called the period of latent summation. incoming signals canbe excitatory if
they cause the firing, or inhibitory if they hinde: the firing of the response. Thus, the
neuron generates a pulse response and sends ittoits axon only if the excitation exceeds
the inhibition by the amount called the threshold of the neuron.

Since a synaptic connection causes the excitatory or inhibitory reactions of the
receiving neuron, it is practicalto assign positive and negative unity weight values
respectively, to such connections.  This alows us to reformulate the neuron’s firing
condition such that the neuron fires when the total sum of the weights toreceive
impulses exceeds the threshold value during the latent summation  period.

The incoming impulses to a neuron can only be generated by neighboring
neurons and by the neuron itsclf (feedback), Usually, acertain number of incoming
impulses are required to make a target cell fire.  Impulses whichare closely spaced in
time and arrive synchronously are more likely to cause the ncuron to fire. As

mentioned before, observations have been made that biological networks perform



temporal integration and summation of incoming signals. The resulting spatio-temperal
processing performed by natural neural networks is a complex process and much less
structured than digital computation. The neuralimpulses are not synchronized in time
as opposed to the synchronous discipline of digital computation.

The characteristic feature o f the biological neuron is that the signals generated
arc either absent or have maximum values. This means that information is transmitted
between the nerve cells by means of binary signals.

Despite its apparent simplicity, this computational function accounts for most of
the known activity of the brain. Underlying it, iowever, is a complex electrochemical
system. This network of ncuronsis responsible for all of the phenomena that we call
thought, emotion, and cognition, as well as for performing myriad sensorimotor and
autonomic functions.

The brain is somchow capable of taking neurons which are five or six orders of
magnitude slower than silicon logic gates, and organizing themso as to perform some
computations many times faster than the fastest digital computer. One way the brain
seems to have managed to do thisis by massive parallelism inits gray matter. That is,
the computing elements are arranged so that very many of themare working on a
problem at the same time. Since there are huge numbers of neurons, the weak
computing powers of these many slow clementsare combined together to form a
powerful resultant. The architecture of the brain, however, is not well understood at

thistime. The speed of the neurons have not increased much involution, so the way
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to get more power seems to be to add more neurons, a strategy highly developed in our
own massive cerebra cortex [ 1()].

The above discussion is extremely simplified when seen from a neurobiological
point of view, though it is valuable to gain insight into the principles of “biological
computation. ” Artificial neural networks arc far simpler than their biological

counterparts.

2.2 Artificial Neural Networks

A variety of artificial neural network architectures and algorithms have been
reported in the literature [1]. In general, the architectme can be defined as an
interconnection of neurons such that neuron outputs arc connected, through synaptic
weights, to all other neuronsincluding themselves.

Every neuron model consists of a processing clement with synaptic input
connections and a single output. The signal flow of neuron inputs and output are
considered to be unidirectional, Thencuronasa processing node performs the
operation of summation of all its weighted inputs (representing Synaptic strength]), and
subsequently, performs a nonlinear operation throughits activation function. The
summed value, which determines the activation level of the neuron, passed into the
function may be considered as an analog to the biological” neuron’s membrane potential.
Different artificial neural network algorithms make usc of different (definitions of the

activation function. Some examples arc the hard-limiting activation functions (binary
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functions) called threshold logic units and the soft-limiting activation functions
(continuous functions) called sigmoidal characteristics. Most artificial neural systems
do not involve the biological neuron features of’ delay, refractory period, or discrete-
time operation. In fact, the neuron model represent instantancous, memoryless
networks, since they gencrate the output response determinedonly by the present
excitation.

Two particularly popular networks arc the fecdforward and the feedback
network architectures. In the former, all externalinputs arc fedto a layer (layer #l) of
neurons through synaptic weights in such a way thatcachinput is fed to al of the
neurons, Similarly each neuronin layer 1is connected to each neuron of the next layer
(layer #2) through synaptic weights. Layer #2 may be similarly connected to layer #3
which may be the final layer giving the outputs and thus termed the output layer. The
intermediate layers between the inputs and the output layer are termed hidden layers,
This architecture is called ii feedforward network because of the forward flow of
signals. A fecedback network can be obtained from the feedforward network by
connecting the neurons' outputs to their inputs.

This simple discussion gives an introduction to the architecture of the artificial

neural network and establishes a basis for the electronic hardware design.
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2.3 Neural Network Electronic Hardware

The artificial neural network chips were specially designed by the Jet Propulsion
Laboratory (J P1.) for conducting radiation experiments in space onan orbiting satellite,
but were designed and fabricated without any radiation-hardening techniques or any
protection from radiation. It requires a single power supply of 8 volts and consumes
less than 80 MW of power. A brief description of this chip follows, but more extensive
coverageis given in the Appendix (page 11 6).

The neural network chip contains 32 neuron cells and 532 synapse cells
arranged ina partially populated (due to power limitations for space flight) 32 row by
32 column array. A block diagram of the layout of the artificial neural network chip is
shown inFigure 1. The neurons lic along a diagonal in the array. The synapses are
placed where the row number is less than the column number. 1 lowever, when the
column number is greater than 22, the synapses arc placed inevery row position except
along the diagonal.

Neuron () (bottom left in Figure 1) canonly receive input from an external
source. Neuron 1 also canreceive input externaly or from neuron O through the
synapse at row (), column 1. Neurons 2 through 31receive inputs only from any of the
other neurons through the synapses in their respective columns. The first 22 neurons
each can receive input from as many synapses as the column number that they are

positioned in (i.e., neuron 20, located in column number 20, canreceive input from 20
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synapses).  ‘Thelast9 neurons in columns 23 through31 all have fully connected
feedback circuits and thus have 31 synapses connected to the input of each neuron,
Thenature of the neural network chip is primarily analog for compactness and
for low power consumption, with the digital portion only playing a supporting role.
The major analog components are the neurons, synapses, and anoutput buffer. The
major digital components arc the static memories for storage of synaptic weight within

each of the 532 synapses.

2.3.1 Ncu ron

The neurons arc nonlinear transimpedance amplifiers. The characteristics of an
operational amplifier resembles a sigmoidal function and thus isa natural circuit for a
ncuron. Each neuron outputs a voltage which is a sigmoidal function of its input
current. A block diagram of the neuron isshownin the upper right corner of Figure 2.
A negative input current forces the ncuron's output high, anda positive input current
forces the output low. Section A. 1 of the Appendix givesa more detailed description,

A voltage to current converter is provided for each row to convert the neuron
output voltage to current input for the synapses, When the voltage output of the
neuron is high, there will be sufficient current input for the synapses in that row to
multiply. The higher the neuron output voltage, the more current that willbe available
for the respective synapse to multiply. On the other hand, if (he neuron voltage output

is low, there will be virtually no input current to the synapsesin that row.
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2.3.2 Synapse

The synapse circuit consists of a 7-bit multiplying digital to analog converter
(MDAC) and a 7-bit digital memory. This circuit o utputs a binary weighted myltiple of
its analog input current. The input current coming from the neuronin that row is
multiplied by the stored digital weight (integerfactor between -63 and +63). The
digital memory provides programi nable weight storage and is randomly accessible. The
upper left corner of Figure 2 shows ablock diagram of this synapse. A negative weight
value programmed into the synapse causes it to have a positive output current while a
positive weight value Causes the outputtobe negative. The circuit design is more
thoroughly coveredin Section A.2 of the Appendix.

Each synapse’s current output is aninputto ancuronin its column. Thus, there
is asingle current summing node in each column to which all the synapses are directly

connected, and that node is also connected to the input of the neuronin that column.

2.3.3 Output Buffer

The output bufferisa wi(lc-range transconductance amplifier configured as a
unity-gain follower. The output voltage closely follows its input voltage and provides
sufficient driving power to interface the neural network chip to other chips. The input
to the output buffer is the voltage from one of the 31 neurons selected by an analog
multiplexer. A special circuit designed into the output multiplexcr alows the output

buffer to be tested separately by feeding itsinput with an externally supplied voltage.
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The single output buffer and multiplexer design was utilized to simplify the interface
between the chip and its external circuitry by reducing tile number of separate output
signals. Section A.3 in the Appendix describes the characteristics and design of the
buffer in more detail. Since al of the neural network’s output must go through this
buffer, it is the most critical component (representing asingle point failure mechanism

for tile chip).

2.3.4 Operation of Neural Network

The synapses in rows () and 1 can be used to provide analog input values to the
neural network (Figure 1). Neurons () and 1 can be biased by ancexternal current input
so that tile synapses in their respective rows will output current when they are
programmed with anonzero weight value.  In this manner, the programmed synapses
will force the ncurons in their columns to a certain voltage related to the
synapse-weight.  ‘Thisis how the input layer of neurons are set to the desired input
value.

The input ayer of neurons are connected to a hidden layer of neurons through
synapses in the same rows as the input neurons and in the same columns as the hidden
neurons. 1 .ikewise, the hidden neurons arc fed through synapses to a layer of output
neurons. Finally the output neurons could be read out one at a time through the analog
multiplexer of the output buffer.  All the unused synapses were programmed to a

weight of zero so that they were effectively nonexistent and should have no effect on
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the operation of the network. A block diagram of the operation of the neural network is
shown in Figure 2.

If any neurons were determined to be severely damaged by radiation, other
neurons could be used in their place, and the synapses connected to the faulty neurons
could be programmed to zero and thus, theoretically have no effect (m the network,
Row () was usually used to control the network inputs. However, if row 0 was faulty,
then those synapses would be programmed to zero, and the synapses in row 1 would be
used as the network inputs,

'The synapses in columns 23 through 30, where the row number is greater than
the column number, could be used to supply afecdback path (Figure1). However, the
implementation of ncural networks using feedback was beyond the scope of this
experiment. These "fecdback” synapses were only used inthe memory tests and in the

testing of the individual synapses.
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Chapter 3

Experiment

To study the fault tolerant characteristics of the artificial neural network chips,
they were exposed to three different types of ionizing radiation. A total of 7 chips were
used for the experiments where each chip was either setup with or without power
applied. Several tests were implemented tostudy the effects of the radiation onthe
various components of the hardware. The radiation experiments were concluded when
the ncural network chips failed and were unit'stable.  The following sections will

describe these parts of the experiment in more detail.

3.1 Radiation Sources

Tonizing radiation is that which possesses enoughenei gy to break atomic bonds
and create electron/hole pairs (i.€., cause ionization) in the materials of interest, which
in the case of MOS devices are primarily silicon dioxide and silicon. This radiation may
be in the form of photons with energies greater than the bandgap of the material, or in
the form of particles such as electrons and protons. Three types of ionizing radiations
were used in the experiments: high energy electron, high energy proton, and gamma
radiations. The radiation exposure was conducted a a uniform dose rate and at room

temperature.
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The electron irradiation was conducted at the JPL’s Dynamitron Accelerator
1 .aboratory using a1.() MeV electron source at a flux level of 2.08 x 1(7 €/(cm’-sec)
for adose rate of 50 rad/sec. Two chips were exposed to the electron radiation.

The proton irradiation used an 8.() McV proton source at a flux level of
1.0 x 10° p'/(cm’-see), again for a dose rate of 50 rad/scc. This aso was conducted
using two neural network chips at the California institute of Technology’s Tandem
Accelerator Laboratory.

Gamma irradiation was conducted at the JPL.’s Total lonizing Dose Laboratory
using a 1.25 MeV 4,00)() curic Co®™ Gamma Cell. Two different dose rates were used
by placing a chip 14 cm from the source for a high dose rate of 50 rad/sec and another
chip 335 cm from the source for alow (lose rate of 0.1 rad/sec. This was done to study
the effects of high and low dose rates on chip (degradation. A total of three neural
network chips were exposed.

For each of these radiation sources, the ncural network chips were exposed to
the radiation for a specific time period to receive a particular cumulative dose after
which the chips were tested. The chips would then be exposed again. This cycle was
repeated until the chips showed severe degradationand were untestable. At the
completion of each of the radiation exposure experiments, room temperature annealing

measurements were made on all of the chips.
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3.2 Biased vs. Unbiased Chips

During the radiation exposure, atleastone chip was "under bias" and one chip
was unbiased. "Under bias" means that power was applied to the chip so that electric
fields were present in the devices.

The biased chips had 8 volt power supplied to the Vdd pin. The inputsto the
bias transistors, however, were turned “off”, and either connected to ground for n-FET
devices or to Vddfor p-IFEET devices. Additionally, all of the output pins were |eft
floating and all of the digital inputs were grounded. The netresult was that many of
the individua transistors in the chip had no voltage applied to their gates. However,
since the synapse memory latches were alluninitalized, the state of alarge majority of
transistors were randomly determined each time the chip was powered up. I'bus, the
transistors in the neurons were also in a random state since their input depended on the
Synapses.

The goalof this specific biasing scheme was to avoid CMOS latchup. This
occurs When some parasitic bipolar transistors are formed from the CMOS wransistor
components which causes excessive power consumption. Latchup still occurred when
there was severe degradation at high cumulative doses of radiation (See Section 5.5 of
Chapter 5).

The unbiased chip was left with all the pins connected to a conductive foam

pad. This prevented any charge b uild-up on the transistors due to radiation.
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One chip was biascd and another (me was unbiased in both the electron and
proton radiation exposures. Inthe gamma irradiation, (me chip was biased while a
sccond onc was unbiased at the high dose rate (50 ra(i/see), and a third one was biased

at the low dose rate (0.1 rad/see).

3.3 Chip Tests

To evaluate the effects of radiation exposure, the neural network chips were
tested on a 33 Mllz 486 IBM A’]’ compatible computer with digital and analog
interface boards plugged into the ISA bus. The interface boards supplied (me 12-bit
A/D channel, two 12-bit ID/A channels, and all the necessary digital 1/O's.

A fixture was constructed to test the chips which consisted of a 64-pin ZIF
(z,er(~illscr( i(~1~-force) socket to hold the chip, connectors for the computer interface,
power supply connections, and resistors to bias some chip inputs. in addition, digital
level shifters were provided to enablethe 5 volt digital signals from the computer to
interface with the neural network chip at different voltage levels. Also, the fixture
contained a toggle switch to select either ncuron 0 or neuron 1 for input from a DAC
(digital-to-analog converter) output from the computer.

A test program was writtenin C language with about 2700 lines of code which
focuses on the testing of the major analog and digital components of the neural
network chips by performing four tests: neuron, output buffer, synapse-ncuron,and

memory tests. We describe these tests in further detail.




3.3.1 Necuron Test

In the neuron test, the transimpedance transfer function of the neuron was
measured. Only neuron 0 and neuron 1 were tested, since they were the only neurons
that had external inputs. A voltage froma computer controlled DAC was connected to
the neuron input through a resistor. When this voltage was ramped, the neuron was
swept with a current input in the range of -400” mA to +400 mA. The output voltage
was measured for each of the 800" DAC voltage steps and ranged from () to 8 volts.
The resulting curve should represent a sigmoidal function centered at a current input of
0 mAand an output voltage of 4 volts (Vdd /2).  Since the neuron output voltage
could only be measured through the output buffer, the transfer functions of the neuron

and the output buffer were convoluted to produce the re sult.

3.3.2 OutputBuffer Test

The output buffer test checked whether the buffer’s output voltage followed the
input voltage. The multip lexer that selects the input to the output buffer was switched
over to a pin on the chip suchthatan external voltage could be applied. Then, the
output voltage was mecasured while sweeping the input voltage from 0 to 8 volts. The
output shouldincrease linearly with the inputvoliage. Sinceall of the neural network’s
outputs must pass through this buffer, it is the most critical component, representing a

single point failure mechanism for the chip.
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3.3.3 syllapsc-Neuron Test

The synapse-ncuron test examined all the 532 synapses and 31of the 32
neurons. Each test involved one synapse-neuron pair where the output current of each
of the synapses was swept by programming them from -63 to +63 and measuring the
voltage output from the corresponding neuron. Inputstoall the synapses originated
from neuron zero, either directly as for the synapses onrow zero or indirectly through
a synapse-neuron pair. When a synapse ina particular row is being tested, the neuron
in that row must have a sufficiently high output voltage to supply current into the
synapse. ‘1'bus, the corresponding Synapse in row () must provide an appropriate input
current to that neuron to force its output high. For synapses in row 0, neuron 0 is
forced high by its external currentinput.  All the other unused synapses were
programmed to zero to eliminate their effects. The results of this synapse-neuron test
were analyzed in two ways.

First, all the voltage responses from the neurons were graphically displayed,
which allowed us to visually inspect the degradation of all of the 532 synapses.
Without radiation, all the curves were sigmoidal in shape (as in the neuron test) and
centered at a synapse DAC value of zero. Statistical variationsin fabrication were
evident as all the 532 synapses showed dightly varied sigmoidal curves. The synapses
in row 0 also showed offset curves since neuron O was externally biased.

Second, to quantify our observations, a "monotonicity" lest was devised. In

this test, €ach point on the synapse sigmoidal curve was compared with the next more
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positive point to sec if the ncuron output voltage was monotonical ly increasing. Errors
were counted as any pair Of points that were not monotonically increasing. All the
chips initially hadno monotonicity errors,

The synapses were controlled through other neurons at the input and
convoluted through other circuits at the output, and thercfore, were the hardest
components to test. These curves showed the radiation effects not only on the

synapse but on the neurons, the gain-contr ol circuits, and the output buffer.

3.3.4 Memory test

The memory test was performed to evaluate the digital memory in all the 532
synapses, where each synapse memory was organized as a randomly accessible 7-bit
word with a lo-bit address. The memory lest consisted of two tests: a standard “all
values’” memory test which verified if correctvalues were written to the chosen
memory locations; anda walking-ones memory test which verified if the correct
memory locations were being addressed.

The standard “all values” memory test wrote and read all 128 values
(-63...-0,4 0...463) for eachof the 532 synap tic memory words with some attempt to
test memory addressing functionality as well. Errors were counted as a mismatch
between the value written and the value read from cach of the synapses.

In the walking-ones memory test, a background pattern (e.g. 0101010)” was

written to al of the synaptic memory addresses, while a forcground pattern which was
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the complement of the background pattern was written to onc address. All the
addresses were then rcad back to detect if any of the patterns were written to an
inappropriate memory address.  The foreground pattern was written to all of the
synapse memories in succession. This exhaustively tested for errors in the memory
addressing circuits,

Although there arc 492 unused memory addresses (out of the 32x32 matrix),
both of the memory tests still included them inthe testing to confirm that they had no
effect on the rcal memory locati ons. The total number of errors and the total errors by
row and column were recorded. in addition, if and when errors developed for either of
the tests, the first 200" crroncous results were recorded so that the errors in the

individual bits of the word could be analyzed.

3.4 Failure Modes

Since the chips could failin a number of different ways, wc had to develop a
criteria of functionality and failure for the chip asa whole. The chip was considered to
be nonfunctional if any of the following occurred: tile chip consumed over 200" mA
withan 8 voit power supply (1.6 Watts); the analog performance was so distorted
(sigmoidal curves from the neuron and synapse- neuron tests) as to make it unusable as
aneural network; or 80% of the total memory had failed. in most of the experiments,
the chips had latched-up during exposure or during testing, exceeding the power limit,

and were untestable and hence. declared nonfunctional.




27
chapter 4

Results

The most significant observation from all of the radiation experiments was that
the biased chips degraded at least an order of magnitude faster than the unbiased ones.
The cumulative dose for the unbiased chips were 140 krads for the electron radiation,
250 krads for the gamma radiation , and 440 krads for the proton radiation. The biased
chips had lower cumulati ve doses of 6 krads for the electron radiation, 7.5 krads for the
low dose rate (0.1 rad/sec) gamma radiation, S krads for the high dose rate (50 rad/sec)
gamma radiation, and 30 krads for proton radiation. We shalllook at the degradation
of the neural network electronic hardware in more detail for cach of the three types of

radiation, first for the unbiased chips and then for the biased chips.

4.1 Unbiased Chips

The electron radiation will be discussed first, followed by the gamma and
proton radiations. Since similar degradation characteristics were observed for all three
radiation sources, only figures, showing theeffects of radiation on synapse-neurons,
neurons () and 1, the output buffer, monotonicity errors, and memory errors, for the

electron radiation are included as an example.
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Figures 3.1a and 3.1 b show for the threc radiation exposures the percent
monotonicity errors versus total radiation dose and annealing time, respectively. In
Figures 3.2a and 3.2b, the percent memory errors from the standard memory test are
shown again for the total radiation dose and annealing time. The results of the
waiking-ones memory test arc shown in Figures 3.3a and 3.3b. These figures not only
allow us to sce the hardware degradation as will be discussed in the next sections, but
also to compare the radiation effects from the diffcrent sources as will be described in

tile next chapter.

4.1.1 Electron Radiation

With electron radiation, the unbiased chip had no noticeable sign of any
radiation effects up to 20 krads. Figure 4. la shows the 532 synapse-neuron baseline
characteristics at () krads.

The output buffer test at 30 krads showed initial signs of a (distortion (“kink™) at
the high end where the input voltage was about 7 volts and the output voltage was 6.75
volts. Just beyond that point, the output voltage suddenly increased more rapidly than
the input voltage. Figure 4.4 shows this “kink” in the output buffer characteristics.
This could be scenin all the tests including the neuron tests and the synapse-ncuron
test, since the output voltage was always measurcd via (he output buffer.

The neurons 0 and 1, and the synapse-11curon curves all began to show slightly

steeper (higher gain) sigmoidal curves with a1% monotonicity error at 40 krads. This
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can be observed in Figure 4.2 and 4.3, showing the neuron () anti 1 characteristics,
respectively, andin Figure 4.1b, showing the 532 synapse-ncuron characteristics at 40
krads. in addition, the “kink” from the output buffer grew larger and was definitely
observable in al] of the curves.

At 50 krads, all the sigmoidal curves showed noticcable steeper slopes, and in
addition, showed an 11% monotonicity error (Figure 3.1a). Some of the sigmoidal
curve sat 60 krads of total dose inthe synapse-ncuron plot (Figure 4.1¢) started to shift
to the left with a 30% monotonicity error.  Instecad of having the sigmoidal curve
centered at the input synaptic weight of (), they were centered at a negative synaptic
weight valuc. This means that the neurons were fermi high at earlier (lower than
normal) input synaptic weight value.

As the cumulative dose was increased to 70 krads and then to 80 krads,
increasing shifts to the left were noticed (neurons turning on earlier) as shown in Figure
4.1d. Monotonicity errors similarly increased from 48% at 70 krads to 56% at 80
krads (Figure 3.1a). Some curves were shifted to such an extreme extent that the
neurons were always forced high, showing a maximum output voltage of 8 volts (Vdd),
resulting ina flatline at 8 volts, instead ofa sigmoidal shaped curve.

At 100 krads, in addition to the flatness in the synapse-ncuron curves (Figure
4.1¢), the monotonicity errors increased to 6 4 % . At this point, the radiation
experiment was temporarily terminated and the chip was left to anneal at room

temperature overnight.  After about 13 hours of annealing, a few of the synapses and



30

neurons had partially recovered. The sigmoidal curves were shifting back to the right
and reducing the monotonicity errors back to 58% (Figure 3.1a). however, there was
practically no change in the slope of the neuron and synapse-ncuron transfer curves and
the “kink” at the high end for the output buffer.

Further, total dose increase to 135 krads resulted in similar but more damage.
Monotonicity crrors increased from 61% at 110 krads to 72% at 120 krads, at which
point they remained saturated (flattened out) up 1o 135 krads as shown in Figure 3.1a.
in Figure 4.1f, the 532 synapse-ncuron characteristics at 120 krads are shown.
Memory errors started to develop with 11% at 120 krads and reaching 27% at 135
krads for the standard memory test (Figure 3.28). For the walking-ones memory test,
there were 7% errors at 120 krads, which incieased gradually 10 48% at 135 krads
(Figure 3.3a).

At the final dose of 140 krads, more than 75% of the synapse-neuron
characteristic curves (Figure 4.1 g) were flat (neurons fully turned on).  The
monotonicity crrors recached a maximum of 74% where the standard and walking-ones
memory tests reached 29% and 48%, respectively.

Column dependent errors were observed for both the monotonicity and the
memory tests.  The monotonicity errors showed only a slight column dependency
(Figure 4.5) wher e the last 9 columns had 80% errors and the other columns had about
65% errors at 140 krads. The memory errors were mainly limited tothe last 9

columns, reaching 50% errors for the standard test and 90% errors for the walking-
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ones test at 140 krads. Figure 4.6 shows the memory errors by column for the standard
memory lest. Synapse memory bit 6, which is the sign bit, showed significant errors for
both memory tests for the first 200" errors detected. This can be seenin Figure 4.7.
Room temperature annealing was done and measurements were taken 5 hours,
18 hours, 31 hours, 60 hours, and 106 hours after the final radiation dose. After 60
hours of annealing, the walking-ones mcmory errors fully recovered (Figure 3.3 b), but
the standard memory test still showed 6% errors, but recovered fully after 106 hours of
annealing (Figure 3.2 b). Monotonicity errors recovered only dlightly to 63% after 106
hours of annealing (Figure 3.1b). The synapse-nieuron curves shifted back to the right
during room temperature anncaling measurements. These can be seen in Figures 4.1h,
4.1i, and 4.1j for anncaling measurements at 31 hours, 60 hours, and 106 hours,
respectively. * 1" here were no changes to the curves for neurons () and 1. The sigmoidal
curves continued to be very steep and showed high gain. The output buffer also did

not recover during the annealing and the “kink” at the high end did not change.

4.1.2 Gamma Radiat ion

The unbiased chip for the gammaradiation performed without any degradation
at 20 krads, but started showing some effects at30 kinds where sigmoidal curves of a
fow synapse-neurons began to turn steeper.

At 40 krads, further stecpnesswas observed and the “kink™ in the output buffer

started to develop. ‘1 here was 1 % monotonicity error as shown in Figure 3.1a. Asthe
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dose was increased to 50 krads, more steepness in the sigmoidal curves was seen with
2% monotonicity errors, and the output buffer showed a larger “kink™ at the high end.
Both the ncuron () and 1 curves were also showing steeper sigmoidal characteristics
and shifting to the left.

At 60 krads, all of the synapse-neuron curves became very steep. These curves
started to shift to the left at 70 krads, and monotonicity ervors increased to 1()%.

As the dose was increased to 80 krads, 90 krads, and 1()() krads, al the
synapse-neuron curves shifted further to the left, started losing their sigmoidal nature,
and became fiat at 8 volts (neurons always high). The monotonicity test showed 25%
errors at 80 krads, 37% at 90 krads, and 42% at 1 ()() krads (Kigure 3.1a). The chip was
then left overnight to anncal at room temperature.  After over 14 hours of annealing,
there was only slight recovery as a few synapse-ncuron curves shifted towards the right
anti the monotonicity errors decreased to 34%.

When the total dose was increased to 120 krads,140krads,and160krads, the
left shift of the synapse-ncuron curves continued and the characteristics became flat.
Monotonicity errors increased from 49% at 120 krads to 52% at 140 krads and then
scemed to saturate to 60% at doses greater than 160 krads. At 170 krads, about half of
the synapse-neumn curves were fiat.

Irom 180 krads to the final cumulative dose of 250 krads, the remaining
synapse-ncurm curves shifted to the left. Only afcw good synapse-neuron curves

were seen, and the remaining curves were all flat at 8 volts.  The monotonicit y errors
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reached 63% at 250 krads. Memory errors started occurring at190 krads with 8%
errors for both the standard (Figure 3.2a) and walking-ones (Figure 3.3a) tests. The
memory errors, similar to the monotonicity errors appeared to increase exponentially
and scemed to saturate at 30% with 250 krads of total dose for the standard test and at
48% with 220 krads for the walking-mm test. FFor both the memory tests, there were
significant errors with memory bit 6 (sign bit) in the first 200" reported errors.

Column dependency was observed for both the memory and monotonicity tests.
Again, there were memory errors only in the last 9 columns for both memory tests with
50% crrors for the standard test and 90% errors for the walking-ones test at 250 kinds.
Monotonicity errors showed only slight column dependency because at 250 krads the
last 9 columns had 68% errors and the other columns had 55% errors.

Annealing was done at room temperature following the final cumulative close of
250 krads and the characteristics were measured respectively after 17, 28, 44, 52, 75,
and 115 hours of annealing. After 17 hours, there were no errors resulting from the
walking-ones memory test as shown in Figure 3.3b. The standard memory test also
recovered after 28 hours of annealing (Figure 3.2 b). Monotonicity errors recovered
only glightly to 49% after 115 hours of annealing (Figure 3.1 b). The synapse-neuron
curves showed that some sigmoidal curves had partly recovered by shifting back to the
right. The steepness or gain of the sigmoidal curves did not change for any of the

neurons. Similarly the “kink” in the output buffcr wasunchanged.




4.1.3 Proton Radiation

For the proton radiation, the unbiased chip had cumulative doses of 5, 10, 20,
80, 11 (), 150, 200,” 280, and 440 krads. The chip performed without any noticeable
degradation or radiation effects up to 20 krads.

At the next level of total dose (80 krads) measurement, the output buffer
showed a “kink” which was observable inallthe curves. Also, the sigmoidal curves for
all the neurons became steeper, and there were 2% monotonicity errors (Figure 3.1a).

The curve steepness further increased at 110 krads with 23% monotonicity
errors.  The left shift of the synapse-ncuron curves started at 150 krads causing
monotonicity erors to increase to 58%.

At 200" krads, most of thesynapse-neur on curves were flat at8 volts (being
shifted to the extreme left and having the neurons fully turncd on). There were 86%
monotonicity errors.  Memory errors also developed.  The standard memory test
showed 21 % errors (Figure 3.2a),and the walking-ones test showed 28% errors
(Figure 3.3a).

At 280 krads, with a monotonicity error of 90%, most of the synapse-neuron
curves were flat at8 volts and only a very few curves still had a sigmoidal shape.
There were 86% memory errors for the standard testand 76% memory errors for the
walking-ones test. All the synaptic memory bits had equal number of errors within the

first 200" errorsreported.
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The monotonicity and memory tests both showed column dependency of the
errors. 'The monotonicity errors showed only a slight dependency as the number of
errors reflected the column number that the synapse was located at. Thus, the last 9
columns, where there were 31 synapses, had more errors than the other columns. The
memory errors started for the last 9 columns at a dose of 2.()() krads while the other
columns had errors starting at a dose of 280 krads.

At the final cumulative dose of 440 krads, the chip was fully nonfunctional and
could not be tested due to excessive power consumption. The chip was left to anneal
at room temperature. llowever, even after 200 hours of anncaling, the chip was still

drawing too much power to be tested.
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4.2 Biased Chips

All the biased chips, exposed to electron, gamma (low or high dose rate), or
proton radiations, showed no changein the shape of the sigmoidal curves for the
neuron () and 1 tests for any of the cumulative doses. Thisis shown in Figure 6.2 and
6.3 for the electron radiation and in Figure 7.2 and 7.3 for the low dose rate gamma
radiation. This indicates that there was no degradation or radiation effect to the neuron
circuit itself. The neuron 1 test, however, showed the sigmoidal curve shifting slightly
to the left as the cumulative radiation dose incrcased. Since neuron 1 also has input
current coming from one synapse, the left shift maybe attributed to the leakage current
coming from that synapse as it degraded with radiation.

The output buffer test also showed no change in the lincarity between the input
and output voltages as the cumulative radiation dose was increased for all the biased
chips. Figure 6.4 and7.4 show the output buffcr characteristics from the electron and
gamma (low dose rate) radiation experiments. ‘1'bus, the main degradation for the
biased chips was from the synapses where the synapse-ncuron curves showed a left
shift.

Room temperature annealing was done following exposure for all the biased
chips. The synapse-neuron curves did not show any annealing even after 100 hours,
and the monotonicity errors remained unchanged, The percent monotonicity errors
during annealing is shown in Figure 5.1b for allthe biased chips under the three

different radhation sources. ‘1 here was some variation to the monotonicity errors as the
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electron radiation, followed by gamma radiation at low and high dose rates and proton
radiation.  Figures are only provided for the clectronand low dose rate gamma
radiations. The other radiation sources showed similar effectsas can be compared in
Figures 5.1a, 5.2a, and 5.3a where the percent monotonicity errors, percent memory
errors, and percent walki rig-ones memory errors versus total radiation dose,

respectively, arc shown.

421 Electron Radiation

The 532 synapse-ncuron characteristics of the chip at () krads is shown in
Figure 6.1a The chip performed without any effects when tested at 2 krads. The
symipse-neuron curves became steeper and shifted to the left as exhibited in Figure
6.1 b, causing 16% monotonicity errors (Figure 5.1a) at 4 krads.  With 70%
monotonicity errors at 5 krads, most of the synapse-ncuron curves (Figure 6.1 ¢) were
fiat at 8§ volts (neurons output high) for al the input synapse weight values. Only a few
synapse-neuron curves still showed a sigmoidal curve.  For both the 4 krad and 5 krad
dosces, there were no memory errors for either thestandard (Figure 5.2a) or the
walking-ones (Figure 5.3a) tests.

Finally, at 6 krads, the chip latched-up and drcw excessive power during the
synapse-neuron and monotonicity tests. Memor y tests were still able to be performed

and showed that there were 26% errors for the standard test and 22% for the walking-
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ones test. Figure 6.7 reveals that the synapse memory bit 0 showed significant errors in
the first 200 errors reported.

Both the monotonicit y and memory tests had column dependency as portrayed
in Figures 6.5 and 6.6, respectively.  For example, at 4 krads, monotonicity errors
ranged from about 40% in the first few colunms to 78% in the last few columns.

Memory errors at 6 krads occurred significantly only in the last 9 columns.

4.2.2 Gamma Radiation (I.ow dose ratce)

For the gamma radiation with the low dose rate (().1 ra(i/see), the biased chip
had cumulative doses of 6, 7, and 7.5 krads.  Iigure 7.1a shows the initial
characteristics of the synapse-neuron curves with no radiation exposure. After the first
radiation dose of 6 krads, the chip already started to show some degradation in the
synapse-neuron curves (Figure 7.1b) and the memory test s, ‘1'here were 5%
monotonicity errors (Figure 5.1a) due to the synapse-neuron curves becoming steeper
and shifting to the left. The standard memory test (Figure 5.2a) had 28% errors, and
the walking-ones test (Figure 5.3a) had 48% errors.

These radiation effects increased at 7 krads showing 15% monotonicity errors,
51 % errors for the standard memory test, and 71 % errors for the walking-ones memory
test, The synapse-ncuron curves are shown in Figure 7.1¢. At the final dose of 7.5
krads, more synapse-ncuron curves had shifted to the left [Figure 7.1d) with 23%

monotonicity errors. The memory errorsincreased as well to 60% for the standard test
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and 78% for the walking-ones test. The sign bit (bit 6) for the synapse memory
showed significant errors in both the tests for the first 200 reported errors. This can be
seen in Figure 7.7. Memory bit0 also had some errors.

Co] umn dependent errors were observed for both the monotonicit y and memory
tests ill Figures 7.5 and 7.6, respectively.  The column dependency was less
pronounced in the monotonicity test where the errors ranged from 10% in the first few
columns to 27(% in the last few columns. There were more memory errors in the last 9
columns showing 83% errors for the standard test and 90% errors for the walking-ones
test compared to 30% errors for the standard test and 47% errors for the walking-ones
test in the other columns at 7.5 krads. The first 5 columns did not have any memory

errors.

4.2.3 Gamma Radiation (High dose rate)

For the high dose rate (50 tad/see) gamma radiation, the biased chip had
cumulative doses of 4, 5, and 6 krads. At 4 krads, the chip did not show any signs of
degradation. Synapse-ncuron curves started shifting left and becoming steeper at 5
krads with 12% monotonicity errors, There were 4% errors for the standard memory
test and 23% errors for the walking-ones lest,

At the final dose of 6 krads, the chip was nonfunctional due to excessive power
consumption and no tests could be run. After 7 hours of room temperature annealing,

the power consumption of the chip decreased. The synapsc-neuron curves showed



63

significant left shift with31% monotonicit y errors.  The standard memory tests showed
47% errors, and the walking-ones memory test showed 58% errors. Memory bits O, 5,
and 6 (sign hit) of the synapse showed errors for both memory tests in the first 200
erroneous results.

No memory errors occurred in the first 9 columns but the other columns
showed errors increasing with their column number.  “his column dependency was also
observed in the monotonicity test where the errors ranged from about 1 ()% in the lower

numbered columns to about 35% in the higher numbered columns.

4.2.4 ProtonRadiat ion

For the proton radiation, the biased chip performed well at 1 and 3 krads, and
there were no signs of degradation. The shape of synapse-ncuron curves showed only
a slight change by starting to become steeper at 6, 8,10,and15 krads. The
monotonicity error was still insignificant at 15 krads (().1% errors) since the synapse-
neuron curves still maintained their sigmoidalshape, withoutany |eft shift.
Furthermore, no memory errors were measured for both the standard and walking-ones
tests.

The cumulative dose was then doubled to 30 krads, when the chip became
nonfunctional by latching-up and excecding the current limit. None of the tests could

be performed and no curves could be drawn. 1:ven after 1()() hours of annealing time
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the chip continued to be nonfunctional and had excessive power consumption. Thus,

the biased chip was damaged very severely with 30 krads of proton radiation.



{2
o +
Q i
Qo ————————————————— + =
= 4
o
.~ -_
)
= i
e T+ =
= l
m e

""" S

~ & 1 =

- Q
g i
o T g
— D ® 8
b N2 b=
S 2
>, R E
= a7
= )
l- \D N
= >
-8 pe
o
=
o
2 <t
~hd
=
O
(&)
| -
£ o

fan) 3

90
80
7
60
0
20
10
0

100

J0427] £J12110)0U0]A] JUIDIIJ

Figure 5.1a Percent Monotonicity Error vs. Total Radiation Dose
Jor All Biased Chips (Gamma, Electron, and Proton Radiations)

Gamma Radiation —&— Electron Radiation ———— Proton Radiation
(High Dose Rate)

Gamma Radiation
(Low Dosc Rate)

65




66

(916 950( YSIH) UONEIPEY BWIWERD) g (3)8Y 350(] M0°T) UOHRIPRY PIIWED o

(dnofy) Surjeauuy aunjerddwa | wooy]

orl 071 001 08 09 oy 0T 0

2 2 I 'y 1
1] L]  §

=
+
L 4
L o4
L o
-
3
3
NS
oo
-
5
-
-
L o
-
-
-
-
-+
L o
-+
L

)

I WRE R
vy yrsrergrorey

1
!

T )
LI AN G B mm §

-l

'
FyrrrryrvrrroeTrTreTrrt

-t

sdiyD poserg
SuI[BIUUY "SA J0.LIY A321U0)0UOA] JUIIIDY

08

06

001

J0.L17] A3ID1U0JOUOIA] JUIIIDY

“igure S.1b  Percent Monotonicity Error vs. Annealing

Jor All Biased Chips (Gamma, Electron, and Proton Radiations)



7 piaun ) sdiy) paspigr 1| 10f

-

o pup ‘uo.i129|

(SuUOnDIPPY UOIOL

M [PIOL S0 OIS SIOWI P IUIUD DT § MNTL

SO UONDIPD

Percent Memory Error

Percent Memory Error vs. Total Radiation Dose

Total Radiation Dose (krad)

—— Gamma Radiation —%— Gamma Radiation —*— Electron Radiation ~‘- Proton Radiation
(Low Dose Rate) (High Dose Rate)

L9



1
140

L
v
120

100

60

Room Temperature Annealing (Hour)

40

Percent Memory Error vs. Annealing
Biased Chip

20

o
(=)

> o o o o
o0 ~ © g} -+

100
20
20
10

0

JO.LI7Y A1OWDA] JUIID ]

Figure 5.2b Percent Memory Error vs. Annealing
for All Biased Chips (Gamma, Electron, and Proton Radiations)

68

Rate)

——— Gamma Radiation (Low Dose —#—— Gamma Radiation (High Dose —*—— Electron Radiation
Rate)




(SHOUDIPDY U004 PUD UO.4JII] ‘Dunun)) sdiy ) posvig] ]V 10f

ISOCT UONDIPDY IDIO.L S LOLU] LIOWD P SOUQ-SULYIDM JUIIUdJ  DE'S 2INS1of

Percent Memory Error

Percent Walking-Ones Memory Error
vs. Total Radiation Dose
Biased Chip

0 2 4 6 8 10 12 14

Total Radiation Dose (krad)

—— Gamma Radiation —%— Gamma Radiation —*—— Electron Radiation —~ Proton Radiation
(Low Dose Rate) (High Dose Rate)

69




Percent Walking-Ones Memory Error vs. Annealing
Biased Chip

100

Percent Memory Error

SUDAUUY "SA L0415 SLOWI Y SOUQ-SULYIDM IUIDI  GE S 2NT1f

Room Temperature Annealing (Hour)

(SHOUDIPDY] U004 PUD “UOLII 5] ‘Dunun D)) sdiyDy pasvrg ||V 10f

—— Gamma Radiation (Low Dose —— Gamma Radiation (High Dose ——— Electron Radiation
Rate) Rate)




HOLDIPDY HO4JI25 12pUn dif ) posvigy
SPPALY Q10 $2USL2IIDADY ) UONIN-ISADUSS 766 D[ Q 240 S1.]

Neuron Output Voltage (V)

532 Synapse-Neuron Characteristics - Dose OOOk

Biased Chip
Electr nRadiation at 5( rad/sec

..........................................................

-48 32 -16 0 16 32 48 64

,,,,,



UONDIPDY UOUIIH 4opun diy) paspigy

SPDAY p 1D SIUSLIIIIDADY ) HOAMIN-ISUDULS 7ES

qr9 24Ny

Neuron Output Voltage (V)

532 Synapse-Neuron Characteristics - Dose O04k

................................ S T :hlp
E ectt n Radia ion at £0 rad/sec

-48 -32 -16 0 16 32 48 64
Synapse Weight (DAC)

L



..............................................................................................

............................................................................................

pse-Neuron Characteristics - Dose 005k

(Y

532 Syna

....................................................

o0 ~ \O U <t o Q\]

(A) 98e110 A IndInQ) uoINON

Figure 6.1¢ 532 Synapse-Neuwron Characteristics at S krads
Biased Chip under Electron Radiation

32 48 64

16

-32 -16

48

“64

73

~~
O
<
a)
—
N
e
&N
o
=
L
72]
o
]
=
>
w2



74

AS00 - — - - - MAr00 - - — - — M0 — — — — 000
(vw) juaaan)) ynduy
000170 000€°0 000T°0 0001°0 0000°0 0001°0- 00070~ 000€°0- 00010
1 i 1 1 1 3 3 1 'y L 3 1 i 3 3 1 FIUCEN TS 1 1 L 2 1 L I I 3 1 3 3 3 1
L L] L ] v L L L] L] ¥ ,- L) ¥ L DU ¥ L L L)  § L L] L] ¥ Ll LJ j

(A) ageyjoA INdinQ

Biased Chip under Electron Radiation

J35/pel ()S J& U0 RIPRY U0IIN[]

SINSLIdYIBIARY ) () UOININ

Figure 6.2 Neuron O Characteristics




UONDIPDY U025 dopun diy ) pasplrgyg

SIUSLIDIIDADYY) [ UOANIN € Q DUNT1f

Output Voltage (V)

Neuron 1 Characteristics
Electron Radiation at 50 rad/sec

o B0000 A e . :

-

70000

-’.
®

------- e 50000 B
: 7 J ;

. !
! .

2t 2 onnon
L2 ¥

....

-0 4000

-0-3000

-0.2000

-0.1000 ().0000

0.1000

Input Current (MmA)

0.2000” 0.3000 0.4000

000K ———— 002K

"~ 004K

77 - 005K

CL



HONDIPDY UOLID|5] LopUn diy ) posnigy

SONSLLIDADY ) A2 ffngy inding 9 241311

Output Voltage (V)

Output Buffer Characteristics

Electron Radiation at 50 rad/sec

8.000 == ron-

8OO0 e e e s > z

so00 Lo IO S S PP Al S

2000 e L e S S A L ,

3.000 b e . e

0.000 — ettt
0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Input Voltage (V)

— 000K ====-002K ‘7 004K “7- 005K

9L




Biased Chip

Percent Monotenicity Error by Columns
Electron Radiation at S°rad/sec

bttt | A

=
~

100
90
80

100175 AJ1DIUOIOUOJA JUIDIJ]

Figure 6.5 Percent Monotonicity Error by Columns
Biased Chip under Electron Radiation

1€
0¢
6T
8¢
LT
9t

¢
1%
[44
1
0¢

Column Number

77

O oosx W 005K




Biased Chip

Percent Memory Error by Columns
Electron Radiation at 50 rad/sec

A RE e .InT_...TTTTTI | -+

10 e

LAl s
LA BB LA RS
o o = o o < o] < <
S © o =~ o v, -+ 23} &

101175 A1OWIJA] JUIDII]

Figure 6.6 Percent Memory Errors by Columns
Biased Chip under Electron Radiation

61

Column Number

I 006K with 109 hrs of annealing

[] 006K




HOUPIPDY WO opun iy pospigy

SUOLIT] PILIOUIN OOT IS-A1{ LOf SAOLL] 1] SAOWIN /7 Q 2.NS1f

Error

200 ~----ooo-
T
180 F
T
160 4
:
L )
10 F
120 +
L 3
-
100 ¥
80 F
o ¥
=N
-
40
nFE . -
0 o M M M M 5 [

Memory Bit Errors for First 200 Reported Errors

Electron Radiation at 50 rad/sec Biased Chip

th
'y
(93]
N
—
o

Bit (Bit 6 = Sign Bit)

[J 1006K B O06K with 109 hrs Of anncaling

6L




Neuron Output Voltage (V)

SPDAY () () 1D SOHUSLIIIDADY D) UOININ-ISADULS €6 D[/ JANS1]

(2IDY 2SO MO[) UONDIPHY Do) 1opun diy)y pasnisy

532 Svnapse-Neuron Characteristics - Dose 000.0k

| | ; : : Blased Chlp
; | | Gamma Radlatlon at 0.1 rad/sec

-64 -48 -32 -16 0 16 32 48 64
Synapse Weight (DAC)

°8



. H B
| 5

..........................................................................................

Gamma Radiation at 0.1 rad/sec

pse-Neuron Characteristics - Dose 006.0k

...........................................................

532 Svnal

64

16 32 48
Synapse Weight (DAC)

-16

-32

(A) 9881 0A IndinQ uoIdN

Figure 7.1b 532 Synapse-Neuron Characteristics at 6.0 krads
Biased Chip under Gamma Radiation (Low Dose Rate)




SPDAY ()£ 1D SHSLIIIDIDY D HOHIN-ISADULS TES D[ f 2ANT1of

(21D ISOCT MO[) HOUDIPDY DUIUD L) dopun diyy) pasnig

Neuron Output Voltage (V)

532 Synapse-Neuron Characteristics - Dose 007.0k

////////

N

..................................................................

Yy

— N

N

)
W\
a——"

~—

§.\, ,
N S 5
NN A “ o
N

5  Biased Chip
Gamma Radia' onat O. rad/sec

-64 -48 .32 -16 0 16 32 48 64

Synapse Weight (DAC)

8




532 Synapse-Neuron Characteristics - Dose 007.5k

3 ﬁl”ﬂ//ﬁ”.mﬂ»[ - Ii Smo T ﬂ.vl’l{ﬁy SN\
W, - =~ ’llM’/’:Mﬂ1ﬂl&..

—te T r——
- i g

-
NN

TXRT
—y -
e

- N hw/
R N o = ~L N
RN iﬂl’””/ .i/,]...,/
\ /;l./ . s ,.I ‘r N . /,5
AN /"”.Il””ﬂl"’//ﬁﬂ”‘ L\ / \
- ol WY WY

N~ O Lo < o N ~

(A) 98e1j0A dinQ uoIMON

Figure 7.1d 532 Synapse-Neuron Characteristics at 7.5 krads

Biased Chip under Gamma Radiation (1.ow Dose Rate)

83

Synapse Weight (DAC)



84

Synapse Weight (DAC)

S\
. Y Z .
- \

...../..

3
N

Room Temperature Annealed: 112 hours

——

TS

, SS—

AN e T Sy 1
L ,//,./’ /ﬂlflﬁi N, NS
LN NN =

==

532 Synapse-Neuron Characteristics - Dose 007.5k

=,
o
e Mﬂ’;’o

(ce] M~ (o] Lo <t o N ~— o _

(A) 28110 A IndinQ uonoN

Figure 7.1¢ 532 Synapse-Neuron Characteristics at 7.5 krads, Annealed 112 hours
Biased Chip under Gamma Radiation (Low Dose Rate)



ASLOO - - - - - — JM0LO0 =« — - = 0900 — - —— 0000

(vw) judaan)) ynduj

000T°0 000€°0 000T°0 000 0 000070 000170~ 00070~ 000£°0- 000170~
L 3 2 3 1 I 4 3 3 3 L ] 3 I 3 )
f 7 v v ] L v L L] L L T v 13 1] 1]

000 .

diy) posery 33s/ped [°() }¥ UOLIBIPEY BUIWIES)

SINSLIdIBIRYD) () UOININ

(A)98eyj0A INdINQ

Biased Chip under Gamma Radiation (Low Dose Rate)

Figure 7.2 Neuron 0 Characteristics




86

ACLOO - — - - — JOLO0 = - —-— AO90 — — — — 207000

(yur) yJudan)) yndug

000%°0-

000t°0 000£°0 00020 0001°0 0000°0 000170~ 000T 0~ 000£°0-
] L L I i i ' 3 1 i L 1 1 ' 3 L 1 Lo i I /] L 3 3 b 1 3 2 2 [l 3 s 2
| s v L 1] T T ’  § 14 v 14 T v v L A9 9,vi9 Bvmm T v T L] - LS LJ 1] - 1 4 L) T

“““““ Q000"

~0000°8

digD paserd 39S/pe [°() J& UOLIBIPEY] BUIWIED)

SINISLIAIBIBYD) | UOININ

(A) ?8ejj0 A INdInQ

Biased Chip under Gamma Radiation (L.ow Dose Rate)

Figure 7.3 Neuron I Characteristics




(2IDY ISOC] MO"[) HOUDIPDY Duup ) 4opun diy?) paspigy

SINSLIDIIDIDYD) o[ inding ¢ 24nS1yf

Output Voltage (V)

Output Buffer Characteristics
Gamma Radiation at 0.1 rad/sec

8.000
7.000
6.000
5.000
4.000
3.000

2.000

-
-
-
-

4 ] M
T T 9 L

i
T

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 £.000

Input Voltage (V)

000.0K = = = " 006.0K 007.0K ~ - = 007.5K

L8



WAL ISIIII LS PR LELRIY Y, ze7

Biased Chip

VLIS LEL LI 1L LI FRAEI TR e
R T T T

1 R
e
IDORAINOTHAR IR IRNINY
—
ILULLIL LI VBRI LI E s
IS NI

]

LLLIIIPERILL LRSI 1RSI IO IR HIAIIES,

\ o o
U1

[T
H o0

e 2

EHITIN U
i o
[

SIL/LIBSLIIEHLIL 1P 112118V IS 1Y,
Ml

VALLILL LI LIRS I HII ISt
(XTI

[
LT

YILILIEU LIS SN BRIV

1488008 11}
! -
emmammmnmanneannomeaeew«eoﬂ%.

WD

H -
ILLIEE OO RIS LIV AT
| wass! ey

SALLILLIEELILL I A IO IEALEHOF

LTI
-
ILLLLLLIL L2 LIS b

o o
13
1

LLLLLLIEILS I OO T s

Percent Monotonicity Error by Columns
Gamma Radiation at 0.1 rad/sec

LIPS
(1}

SIPELAL I,
(13

CLIIII
1

VAIISLIIIY,

r
-’
LN
o~
-
L 3
-
-
-
ES
-
-~
-
-
-
rS
o=
-

80
70

100
90
60
5
40

JO.LI AJIDIUCIOUO]A JUIDId ]

Figure 7.5 Percent Monotonicity Error by Columns
Biased Chip under Gamma Radiation (Low Dose Rate)

1¢
0¢
6¢
8¢
Lt
9¢
Y4
144
€C
[44
| X4
0t
61
81

v N I~ 0

—_— N o+

Column Number

007.5K with 112 hrs of

B 007.0K MW 007.5K

[J 006.0K

annealing

88




Biased Chip

ILILELLLELLIESELLLEE LS IS LI LLLELLSLIL LA LI L LEL ERILIL TP LIS LL LIS RIS LTI EL IL LIV LI L LI LIPS I I RS,

i | —
—ame»ameuwomamacecmeceamemeemoamemanas.mmm»aaaamaaaanao-aoemnaaaamamaaamaoaoaoaaaeeem\‘p»smeeeeemen

T T TR T T

SILLILILLLESIIIOLL I LTI OO IO

|

VLI IS LIS 1AL ELP 1O 1PV IO IAEEILIEFIYL,

UL T O
|

[ e e T
AFIURNONSADAERNRNANARIEIIINNRTINIRERINR

v ——

[ 2T
11

at 0.1 rad/sec

L e
L

1on

e oy
HIRRORSINRINRRRINAN TR HIRDRRSRANN

[ n e

W
CELITLLLIIIPEIIIIILE 1ALV E LA 1P 1Y,
043

SAAAII IR 11511 1L 1 PRIV L7 V4T

Lz o e
(LTI

Gamma Radi

VIILN I 2L II A1 LIl

[ o

ILAILEILP LRI LI SHIIIII1A 1
L T O T T O T )

Percent Memory Error by Columns

[ 2720
|
| j o
|

-
-
-
-
o
-
o=
-
E S
ES
E
E S
-
-
-
L
-+
L3
rS
F S
E S
ES
rS
-
L
E S
-
S

| J———
&0

f= ] > o ] < < =
e~ O v =t cr) o —

0
90

I

10117 K10WAJA] JUIdJ

Figure 7.6 Percent Memory Errors by Columns
Biased Chip under Gamma Radiation (Low Dose Rate)

61
81
L1

91
€l
t1
£l
4!
11
01

6

le}

—_— N n

Column Number

007.5K with 112 hrs of

L] 007.0K W 007.5K

[ 1006.0K

annealing

89




2IDY 2SO MOT]) HOUDIPDY prawp ) 1apun diy?) pasvigy

SUOLL] PLLOUAIY OT 1841 AOf SUOLL] 1] KIOWIN £/ 24HT1of

Memory Bit Errors for First 200 Reported Errors
Gamma Radiation at 0.1 rad/sec

Biased Chip
80 —
160 l§
140 \ - o -
-
120 §
§ 100 §
50 .
40 § B
0 \ Y 4 t 4 t \i
6 5 4 3 2 | 0
Bit (Bit 6 = Sign Bit)
EOOG.OK B 007.0K B 007.5K U 007.5K with 112 hrs of

annealing




91

Chapter 5

Discussion

MOS transistors were originally thouglit to be radiation-hard because their
transfer characteristics did not depend On minority carrier lifetime [ 1 1].  (Minority
carrier lifetime is the most radiation-sensitive material paramcter and the main cause of
radiation-induced failure in bipolar transistors.) However, this optimism was proven to
be ill founded. Both n-FET and p-FE'T devices were found to be very sensitive to
ionizing radiation resulting inlarge changes in threshold voltage and transconductance.

ionizing radiation causes detrimental effects on the characteristics of FET
devices and circuits. The threshold voltages, current driving  capabilities, and |eakage
currents of transistors change as a function of a number of factors: the total (lose of
radiation received and its energy; the bias voltages applicd during the irradiation; the
geometry, type, and method of fabrication of the transistor; the dose rate at which the
radiation is delivered; the temperature during the irradiation; the bias, time, and
temperature after the irradiation is completed | 111. Changes in the properties of the
devices can lead to significant changes in the characteristics of the integrated circuits of
which they arc the primary elements.

The response of integrated circuits may be understood in terms of the combined

response of the individual transistors [11]. 1 Iowever, incomplex circuits such as the
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artificial neural network chip, the analysis can be difficult because of the large number
of possible bias configurations and circuit paths.

The results of the 7 different neural network chips as described in the previous
chapter will be collated here, an:ilyzing the differences between the biased and unbiased
chips, the effects from the three different radiation sources, and comparing the two
dose rates used on the biased chips under gamma radiation. Also, the degradation and

annealing behavior of the chips will be examined in more detai 1.

5.1 Biased vs. Unbiased

In addition to the biased chips degrading more severely with less radiation as
compared to the unbiased chips, therc were other differences observed. For the
unbiased chips, there were radiation effects to the neuron circuit as observed in the
neuron () and neuron 1 tests. The sigmoidal curve of the neuron became stecper as the
radiation dose was increased, while the unbiased chips showed no changes. Both chips
did, however, show the light left shift of the sigmoidal curve in the neuron 1 test.

Also, there were differences in the performance of the output buffer in the
unbiased and biased chips. While the biased chips did not show any degradation, the
unbiased chips showed a “kink” where the output voltage was not a linear function of
the input voltage.

Finally, the anncaling behavior of the chips after the final cumulative dose was

different.  The unbiased chips showed partial recovery with room temperature




93

annealing while the biased chips did not show any significant recovery. For example,
the synapse memory for the unbiased chips in the electron and gamma radiations
recovered fully. The synapse-neuron curves aso showed recovery for those unbiased
chips as some of the damaged sigmoidal shaped curves shifted back to the right. For
the biased chips, there was only a slight change in the synapse-neuro n curves and in the
memory errors.

fonizing radiation causes significant changes in the. characteristics of FET
devices due to surface effects[11]. The major mechanism of degradation is due to the
creation of oxide-trapped charge caused by radiation-induced positive charge buildup in
the gate-oxide region. lonizing radiation also causes surface states (or interface traps)
at the Si/Si0; interface. Oxide-trapped charge causes a negative shift in transistor
threshold voltages; interface traps cause a decreased subthreshold slope in transistors.
The electric ficld applied across the oxide in a FE'T device during irradiation has a
dominant effect on the radiation damage introduced. Positive ficlds (positive bias
voltage applied to the gate clectrode) cause the vorst-case damage.

Threshold voltage shifts for both n-FET and p-FET devices thus depend upon
the bias applicd during irradiation: the voltage applied to the gate electrode has a first-
order effect, and the voltage applied to the source and drain can also be significant
[11]. The p-FET threshold typically shifts monotonically negative as the total dose is
increased. The n-FFET threshold response can be more complicated, shifting in the

negative direction initially and, as the total dosc increases, eventually turning around
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and shifting in the positive direction as the compensation of oxide-trapped charge by
interface trap charge becomes more important.

The part of an MOS structure most sensitive to ionizing radiation is the oxide
insulating layer. When ionizing radiation passes through the oxide, the energy
deposited creates electron/hole pairs by breaking silicon-oxygen bonds [11]. Some of
the radiation-induced charge carriers recombine, whereas most of them drift in the
applied electric field, toward the appropriate clectrode (gate or silicon substrate).

Because of their higher mobility, electrons rapidly driftioward the gate which is
the positive electrode and flow into the external circuit | 11 J. Since thermally grown
oxides have low concentrations of electron traps, ncarly all the electrons exit the oxide
region.

The holes that escape initial recombinationare relatively immobile and remain
behind near their point of generation, causing negative voltage shifts in the electrical
characteristics of IFIXT devices|11}].However, over a period of time, the holes undergo
a rather anomalous stochastic hopping transport through the oxide in response to any
electric fields present.  This hole transport process, which is very dispersive in time,
gives rise to a short-term, transient recovery in the voltage shift. It is sensitive to many
variables including primarily applied field, temperature, and oxide thickness. upon
reaching the Si/SiO, interface, some of them arc capturedin long-term trapping sites
(the hole trap distribution usually extends a few nanometers from the Si/SiO; interface),

and cause a remnant negative voltage shift that is not sensitive to the silicon surface
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potential and which can persist in time from hoursto years. The holes trapped at this
interface have a much larger effect on the voltage shifts than those trapped at the gate
electrode interface. This long-lived radiation-induced voltage shift component is the
most commonly observed form of radiation damage and is very sensitive to the electric
field and temperature.

The oxide trapped charges anneal (recombine) ona linear basis with a
logarithmic time scale [11}. The annealing slopes are lincaily dependent on absolute
temperature. A tunneling process has been hypothesized to be responsible for long-
term annea ling, 4 well as for the eventual saturation magnitude for oxide charges.

When siliconis thermally oxidized, the interface between the amorphous oxide
and the crystalline silicon is generally deficient in oxygen (or abundant in silicon),
giving risc to strained as wellas uncompleted, o1 “dangling,” silicon bonds [11]. These
dangling bonds act as interface traps with energy levels within the forbidden bandgap at
the Si0O./Si interface. Before irradiation, the arcal density of interface traps in a
processed FET device is in the range of 109-101°” traps/cm” which normally are not
much of a problem. When the FET devices are exposed to ionizing radiation,
additional interface traps can be generatedat the SiO./Siinterface, resulting in
discernible and often detrimental effectsin devices. In addition, other types of stress,
including avalanche electron or hole injection and high-field stressing, are also known

to create interface traps at the oxide-semiconduc or jnterface. Anncaling Of interface
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traps does not occur at normal operating temperatures except with very high densities

of interface traps.

5.2 Effects of Different Radiation Sources

The three types of radiation, electron, gamma, and proton, showed different

effects and degradation on the chips whether unbiased or biased. A summary of these

differences will be stated, first for the unbiased chips and then for the biased hips.

5.2.1 Unbiased Chips

Electron radiation for the unbiased chip was the first to cause any damage and
canbc observed in the monotonicity test where errors started occurring at 40 krads
(Figure 3.1ain Chapter 4) and in the memory test where errors started occurring at 120
krads (Figure 3.2a and 3.3a). The “kink™ inthe output buffer was observed at a total
dose of 30 krads, and the shifting o f the sigmoidal synapse-neuron curves was observed
at 60 krads.

The unbiased chip having undergone gamma radiation was next to demonstrate
any damage. This can be observed in the analog characteristics where the “kink” at 40
krads developed in the output buffer curve, monotonicity errors developed at 50 krads,
and at 70 krads the synapse-neuron curves started shifting to the left. Memory errors
started developing at 190 krads. Similarly, the proton radiation for the unbiased chip

also showed the onset of damage on the synapse memory at about the same time.
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However, there were no memory errors at 150 krads, but at 200" krads there were more
memory errors for the proton radiation than for the gamma radiation, The analog
portion of the neuroncircuit for the proton radiation had effects starting at 80 krads.
At this dose, the “kink” developed in the output buffer and monotonicity errors
developed in the synapse-neuron curves which also started shifting at 150 krads. The
proton radiation seemed to cause more degradation in the hardware than the other two
typesof rad i ation. For example, at 200" krads, there were comparatively more
monotonicity and memory errors.

The degradation from electron and gamma radiations scemed to saturate
(flatten out) after the unbiased chips reccived a certain cumulative dose of radiation.
Monotonicity errors for the electron radiation saturated earlier at 120 krads with a
higher error of 73% than for the gamma radiation at 170 krads with a lower error of
62%. Memory errors saturated at the same 30 % for the standard test and 48% for the
walking-ones test for bothelectronand gammaradiations.  Similar to the monotonicity
errors, the onset of saturation was earlier for the electron radiation than for the gamma
radiation. Proton radiation damage seemed to saturate at a higher cumulative dose
with a larger error of 90% for the monotonicity and memory tests. The onset was at
200 krads for the monotonicity errors and at 280 krads for the memory errors.

Post radiation anncaling of the chips also showed differences among the three
types of radiation. Both the electron and gamma irradiated chips showed annealing

behavior, whereas for the proton radiation, the unbiased chips did not show any signs
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of annealing. This might be attributed to the fact that the chip was severely damaged
due to the high total dose (440 krads). The chip with gammaradiation annealed faster
than the electron radiation. The synapse memory fully recovered after 17 hours of
annealing at room temperature for the gamma radiation but needed at least 100 hours
for the chips that underwent electron radiation (1 ‘igures 3.2b and 3.3b). This was also
observed in the synapse-neuron curves and in the monotonicity test (Figure 3.1b). To
summarize, the electron radiation was the first (o cause any damage on the unbiased
chips; the proton radiation was the last to cause any damage, but the damage was more

severe; and the gamma radiation showed faster annealing.

5.2.2 Biased Chips

Similar radiation effects were observed for the biased chips exposed to electron
and gammaradi ations. For example, electron radiation would show analog failures
such as monotonicity errors (Figure 5.1a in Chapter 4) and shifting of synapse-neuron
curves 1krad carlicr than the gamma radiation, whereas the gamma radiation would
show digital failures (memory errors) Tkrad earlier than the electron radiation (Figures
5.2a and 5.33). nut, both types of radiation started having effects around 4 krads and
became nonfunction al around 7 krads. Anncaling behavior was similar to the unbiased
chips where gamma radiation anncaled slightly faster and better than the electron

radiation (Figures 5. Ib, 5.2b, and 5.3 b).
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The chips with proton radiation, however, showed significant difference in
degradation. There were no radiation effects such as changes in the synapse-neuron
curves, monotonicity errors, or memory errors for a cumulative dose of 15 kinds.
Again, similar to the unbiased chip, the proton radiated chip did not show any
annealing, since at 30 krads the biased chip might have suffered severe damage. Thus,
the main difference among the three types of radiation wasthat the proton radiation

had the least effect on the biased chip.

5.3 Dose Rates

‘I’here can be a significant dependence of FET device response on the length of
time it takes to accumulate a given total dose, that is on the dose rate of the radiation
environment.  “1'bus, the total radiation dose alone is not sufficient to specify FET
device response to a radiation environment| 11 ]. At low dose rates, the oxide-trapped
charge tends to be less and the interface trap density greater than their values at higher
dose rates.

Since generaly there are changes in device parameters with time during
annealing, itisto beexpected that during alow dose rate irradiation similar changes
will occur in parallel with the damage effects of the radiation| 111. ‘i’ bus, the changes
in device parameters measured as a function of total dose will depend on the dose rate
at which the radiation is delivered, which is the dose at which it undergoes a given

change in parameters.  1lowever, by characterizing the response with time after the
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completion of an irradiation, it is possible to predict in anumber of circumstances the
response as a function of dose rate.

At highdose rates, the response can be dominated by the generation and
transport of holes through the oxide, showing large negative threshold voltage shifts
immediately after a pulse of radiation; these threshold shifts are reduced with time as
the holes transport to the interface | 1 1]. With high d ose rates that deliver significant
total dose in ashort period of time, space-charge effects can reduce the effective
electric ficld in the oxide, reducing the yield of holes which escape recombination and
thus, reducing the amount of damage induced by aradiation pulse of given total dose.

There is areduction in oxide-trapped charge at the lower dose rates and an
increase in interface trapped charge[11). This increase in interface traps as the dose
rate decreases is due to the lol]g-term buildup of interface traps. In general, at high
dose rates and short times, oxide-trapped charge dominates the device response,
whereas at low dose rates or long times, interface trap charge tends to dominate.

Two types of dose rates were tested on the biased chips with gamma
irradiation. One chip had the high dose rate of 50 ra(i/see, while the second chip had a
lower dose rate of ().1 rad/sec. The results, in contrast to the theoretical expectations,
showed no differences between the dose rates. Both chips started degrading at about 5
krads and became nonfunctional at 7 krads. Amnealing behavior was about the same
with the 50 rad/sec dose rate having aslightly faster and better recovery than the lower

dose rate of ().1 rad/sec as observed in the memory tests. It is likely that the (losc rate
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was not low enough, and one may need to evaluate characteristics at even lower dose

rates of ().()5to ().()1 rad/scc.

5.4 Degradation

From all the radiation testing, we have observed degradation in the analog and
digital portions of the ncural network hardware. The analog portion includes the
neurons, output buffer, and synapses. The digital portion is mostly the memory in the
synapses.  Additionally, there are some supporting digital circuits. These include the
control and decoding circuits. However, no radiation Ssymptoms were detected in this
part of the circuitry. in fact, there is some evidence that the row selection circuit
(including amemory latch that held the row address) and the analog output multiplexer
were still functioning at a very high radiation dose, while all the other components were
severely damaged. We will now discuss the radiation effects seen onthe neurons,

output buffer, and synapses.

5.4.1 Neuron

Despite the fact that each neuron has a few dozen transistors, they were
relatively reliable throughout most of the radiation tests. In the unbiased chips, the
ncuron sigmoidal curve became steeper at doses greater than 2 0 krads.  Thisis
equivalent to increasing gain of the neuron. For the biascd chips, there were no effects

atall as seen from neuron () and neuron 1 tests. This might be due to the low doses of
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radiation (less than 20 krads) or the biasing method. Often the characteristic of the
neuron function flattens out, or distorts as the total radiation dose increases due to the
damage at the inputendin the synapses or the output end in the output buffer.

Nevertheless, the neurons usually out-last most of the other components.

S.4.2 Output Buffer

With radiation damage, the output buffer, which is a voltage follower, usualy
develops a distortion or “kink” in its characteristic function at the high end of its range.
The same “kink’”occurs at aninput voltage of 7 volts and an output voltage of 6.75
volts for all the different types of radiation. It was observed only in the unbiased chips
with a cumulative radiation dose greater than 30 krads. This might also be due to the
fact that the biased chips received lower doses of radiation as explained previously for
the neurons. All of the neural network’s output must go through this buffer and any
degradation would affect the performance of the whole chip.  Although the
development of the “kink” is not entirely fatal, it may, however, interfere with the

“learning” capability of the neural network.

5.4.3 Synapse

Of all the circuits, the behavior of the synapses is most easily and most often
disturbed by rad i ation.  They exhibit symptoms of memory failure which contributes to

t h e digital degradation and leakage current Which contributes to the analog
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degradation. The major digital components in the neural network chip are the static
memories used within each of the 532 synapses. It was interesting to observe that the
memory failures occurred first and most often in the most populated columns of the
array (the last 9 columns numbered from 23to31) where there were 31 synapses per
column. This points out a possible radiation softness in the column-oriented memory
architecture. Monotonicity errors also had a column orientation similar to the men-my
errors, but this was due to the analog architecture.

The memory circuitry includes a buffer circuit for every column of the memory
cells. This buffer will drive the column data line when a memory cell in that columniis
being written to, and it will buffer data being read out from the column. The
unsclected memory cells in that column are isolated from the column buffer by a turned
"off" (high impedance slate) transmission gate, While the single selected cell is
connected to the column buffer through a turned "on" (low impedance state)
transmission gate.

During a write operation, the output of the column buffer driver is connectedto
the output of an inverter in the memory cell through a transmissio n gate in the selected
cell. Thus, the column buffer must be strong enough to change the state of the selected
memory latch.  This is done by forcing the output of alow strength inverter in the
memory ccllto its opposite state. The column buffer must then be able to source or

sink more current than the inverter in the memory latch can outpuit.
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After exposure to high doses of radiation, the. transmission gate’'s high
impedance state might not have such a high impcdance, causing current to leak into the
column dataline. Therefore, since the column buffer must source or sink additional
current through the leaking transmission gates in addition to the current from the
selected memory cell latch, it may not have sufficient strength to flip the bit to the
desired state. This condition isworst in the last 9 columns of the synapse array, where
there are 31 memory cellsin each column.

There arc other similar failure mechanisms that could cause this same behavior,
each involving changes in impedance of the transmission gates used in the memory
cells. First, the transmission gate could have too high an impedance when it is turned
“on” to allow the column buffer 1o program the memory cell. This condition would
add to the difficulty of overcoming the current leaking from turned “off” transmission
gates discussed above. Second, leakage inthe transmission gates of the unselected
cells could overwhelm the output of the selected cell during the read out. This problem
would be worst in columns populated with the most memory cells but would not
involve the writing circuitry. Any one or a combination of these failure mechanisms
can cause the memory errors in the synapses,

The Synapses also demonstrate current leakage as Seen by the left shift not Only
in the synapse-neuron curves but in the neuron 1 curve as well. When a synapse is
being tested in the synapse-neuron curve test, all the other synapses in the same column

are programmed with a DAC weight of zero. This means thatall of the n-FET
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switches in series with the synapse current mirrors (See Figure 1() in Appendix) are
turned “off” (high impedance state). With a zero weight, the sign-bit is also zero, and
the p-FET current steering mirror is turned “of f.” While, the n-FET connecting the p-
FET mirror to the summing node of all the n-FET current mirrorsis turned “off,” the n-
FET connecting the summing node of all the n-FET current mirrors to the synapse
output is turned “on.” “1’bus, the sign bit being zero favors input of negative current to
the neuron from the synapse, which tends to force the neuron output voltage high. If
the radiation causes the n-FFET switches to leak some current through from the n-FET
current mirrors, then each of the synapses programmed to zero will tend to force the
neuron in that column high. For higher columnnumber positions, there will be more
synapses witha weight of zero leaking current into the current summing input of the
neuron in that column. “I’bus, when a Synapse in a column is being tested, it would
need to have ancgative input DAC weight value directly proportional to the number of
synapses in that column in order to force the output of the neuron low.

This explains why the synapse-neuron curves progressively shift to the left as
the column number increases. It 1S necessary to program a lower (negative) weight
value into the synapse under test to compensate for the leaking synapses and make the
total input current into the neuron close to zero where the transition from low to high

voltage of the sigmoidal curve occurs.
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It is important to note that this column dependent leakage problem is not
related to the column dependent memory problem. It is only a coincidence of the
specific internal layout of this chip that these problems are both column dependent.

The degradation of the neural network chips whether biased or unbiased for all
three types of radiation was mainly due to the radiation effects from the 532 synapses.
As seen in the synapse-neuron curves and the neuron 1 curve, the leakage current
causes a left shift, forcing the neuron to be turned on with a lower synapse weight
value. When the memory errors started occurring, monotonicity errors increased
significantly as the synapses were programmed with incorrect values. The sign bit (bit
6) of the memory was shown to have more damage thanthe other bits. This would
cause the synapses to be programmed with a positive value when it should be negative
or vice versa, severely changing the shape of the synapse-ncuron curves from being
sigmoidal. Since the synapses arc integrated with the necurons, any degradation would
cause the neuron characteristics to change and therefore, ater the performance of the

whole chip.

5.5 Power Consumption and Latchup

Power consumption increased with the total dose of radiation. The chip initially
uscd less than 80 mW, but after extreme cumulative doses of radiation, the power
consumption would exceed 1,6 Watts in some cases. The chip drew more current as it

degraded which might be due to the 532 synapses leaking current. Also, during biased
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radiation exposure or during the testing procedures, the chip at high doses would
latchup and consume more than 1.6 Watts in some cases, making it untestable. Once
the chip drew excessive current and the power consumption was greater than 1.6
Watts, it was declared untestable and nonfunctional.

Latchup occurs due to radiation-induced photocurrents generated by high dose
rate ionizing radiation exposure [11]. CMOS circuits fabricated on semiconducting
substrates arc vulnerable to latchup, the state in which a parasitic semiconductor-
controlled rectifier turns on. Once latchup iSinitiated, it fixes circuit nodes in a high-
current, low-impedance state, almost “shorting” the Vdd to ground. Activation of this
path prevents normal circuit operation and can potentially result in permanent damage
similar to that associated with dose-rate hard errors, such as fused interconnect lines or
burned-out junctions.

Inherent in the CMOS structure are p-n-p and n-p-n parasitic bipolar
transistors.  When the “base” region of onc device is composed of the same
semiconductor material as the “collector” of the other device, these bipolars can form a
p-n-p-n type rectifier in paralel with each CMOS inverter.

During normal operation, the p-n-p-n stays in its highimpedance, blocking
state, and the voltage supplies for the chip pass al their current through the FET
structures. If, however, minority carriers are somchow introduced into a bipolar’s base

region, the p-n-p-n can go into its low impedance state and latch the cell [ 1 1].
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A vertical n-p-n bipolarstructure can be turned “on* if any n+ diffusion injects
enough electrons into its p-well base. ina positive feedback configuration with the
vertical n-p-n is a lateral p-n-p bipolar transistor [11]. Holes from a p+ source/drain
diffusion can be injected into the n-substrate base of the p-n-p,

Latchup can beinitiated electrically by applying signals to a device, or it can be
triggered by radiation events. The semiconduct or-controlled rectifier may be turned
“on” by a terminal overvoltage condition caused by a radiation-induced e€lectrical
transient or by ionizing radiation characteristic of dose-rate events[11]. Each of these
triggering mechanisms injects minority carriers into the base of the parasitic bipolars.
ionizing radiation from dose-rate events can inject current across the well/substrate
junction. For p-well CMOS, the photocurrents from gencrated majority carriers, i.e.,
electrons in the substrate (hole in the Well), act as base currents of the parasitic bipolar
devices and tend to turn on the rectifier. These effects of ionizing radiation were
observed when the biased neural network chips latched-up during exposure at high
cumulative doses. However, the chips often became untestable due to latchup after

exposure during the application of test signals.

5.6 Annealing

The effects of annealing were significant the first couple of days, especially the
first couple of hours, but thereafter remained relatively unchanged for several months.

The chip scemed to heal from the radiation damage. FFor example, the Synapse-neuron
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transfer curves (analog portion) returned to a more functional (sigmoidal) state, and the
memory errors (digital portion) decreased. Thesecanbe seen in Figures 3.1b, 3.2b,
3.3b, 5.1b, 5.2b, and 5.3b of Chapter 4. However, anncaling does not fully restore the
chip to the original state even after several months at room temperature. It is
interesting to note that the annealing reduced the severity of the radiation damage to
the level observed when the chip received alower dose of radiation. Therefore, this

indicates that with anncaling the chip canwithstand higher totaldoses of radiation.
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Chapter 6

Conclusion and Future Research

Recent technological advances in artificial neural networks have increased the
level of interest for critical applications in high dependency environments, such asin
intensive carc units, operating rooms,emergency rooms, anti recovery rooms of
hospitals where reliable performance and longevity is a requirement. Thus, this study
allows us to analyze the reliability and robustness of the artificial neural network
electronic hardware by studying their performance and degradation characteristics.

The fault tolerant characteristics of artificial neural network electronics is
studied by exposing thcm (o three types of ionizing radiations: high energy electrons,
high energy protons, and gamma radiations. For each expcriment, one neural network
chip, containing 32 neurons and 532 synapses was biased (with electrical power) while
the other chip was unbiased. The results showed that the unbiased chips were able to
accumulate an order of a magnitude more radiation dose (1 ()() krads or more) than the
biased chips (less than 20 krads) and still remain functional asa neural network.

Both the electron and gamma radiations scemed to cause similar degradation
effects on the artificial neural network chips. in contrast, the chips exposed to proton
radiation needed higher cumulative doses before showing any degradation, but the

damage was more severe.
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As the total radiation dose increased, the electronic hardware consisting of
analog and digital components showed graceful degradation.  For example, the
sigmoidal function of the neuron became steeper (analogous to increasing the gain),
current leakage from the synapses progressively shifted the synapse-neuron sigmoidal
curves to the left, and the digital memory of the synapses and the memory addressing
circuits began to gradudly fail.

The effects of room temperature annealing were significant the first couple of
days following irradiation, especially the first couple of hours, but thereafter remained
relatively unchanged for several months. The unbiased chips showed annealing
behavior while the biased chips did not show any significant recovery. Both the analog
and digital portions of the chip showed some healing. However, annealing does not
fully restore the chip to the original statc even after several months. Nevertheless, it is
interesting to note thatthe annealing reduced the radiation damage to the effect as if
the chip received a lower dose of radiation,

From these radiation experiments, we have a better understanding of the
degradation effects on the artificial neural nctwork chips, and the amount of damage
(or cumulative radiation dose) needed before the circuitry becomes nonfunctional.
Therefore, we can modify certain designs on the neural network chip without using
radiation-hardening tcchniques 1o enhance the robustness and fault tolerance.

Currently, two of these artificial neural network chips are onboard aSTRV-1b

(Space Technology Research Vehicle) satell ite as part of a space radiat ion experiment.
] [ p l p
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The chips, flying in a geostationary transfer orbit, pass through the Van Allen belts in
space being, exposed to electron and proton radiations. One of the chips is exposed
while the other chip is shielded. Both chips remained unbiased most of the time. In a4
month period, the exposed chip has received only 11krads of total radiation. Thus, in
contrast to ground-based radiation study, the space radiation has a lower dose rate
(0.875 mrad/see) and the neural network chips have shown only a slight sign of
degradation. Also, between exposures there are several hours for the chipsto anneal.
However, the space experiments gives us the opportunity to (demonstrate the fault
tolerant characteristics and performance of the artificial neural network chip under
redistic application conditions.

in future research studies, using these findings as a guideline, more radiation
exposure experiments couldbe conducted with finer dosages and ina more controlled
environment (constant temperature) to carefully study the gradual degradation and the
effects of radiation. in addition, degradationcouldbe monitored at both a lower level
(i.e., transistor lcvel) and at a higher level (i.e., ncural network learning algorithm).

In theory, the response of individual transistors to radiation may be used to
elucidate and predict the response of a full integrated circuitto an identical radiation
environment.  Included with the artificialneural network chips are 6 FET devices,
which are designed specifically foresting some of the basic effects of radiation. These
FET devices represent two technologies (PMOS and NMOS) and three types of

devices.  The first is a “threshold” dosimeter, which mecasures the change in the
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threshold of the FI:T as a function of total dose. This dosimeter will also provide a
means for monitoring the total radiationdose. The second device is a “leakage”
dosimeter, which measures the current through a turned-off (gate tied to source) FET
by applying a voltage across it. This dosimeter provides useful data onintra-FET
(from source to drain within a single transistor) leakage mechanisms. The third device
is a “field leakage” dosimeter, which measures the inter-FFET (from one transistor to a
nearby transistor) leakage current. The results of these FE'T devices can then be used
to provide parameters for modeling transistor characteristics. Using circuit simulation
programs such as SPICE, these models canthenbe utilized to simulate full circuit
response with total radiation dose. Therefore, the radiation effects on the neural
network chip canbc modeled at the transistor Icvel and simulation can be done to not
only demonstrate graceful degradation, but also to evaluate and optimize sensitivity to
radiation effects.

Learning is the heart of artificial neura networks. By using a learning
algorithm, there is a high possibility for the network to adapt to the electronic hardware
degradation in the neurons and synapses. For example, the synaptic weights might be
able to adjust during training to the increased gain in the neurons and the leakage from
the synapses causing a left shift. Also, with a parallel architecture, the neural network
will be mm-c fault tolerant with nonfunctional neurons and Synapses by compensating

thcm with some of the other functional ones. 7’ bus, by applying learning to an artificial
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ncural network architecture, there would be higher fault tolerance to the degrading

effects of radiation.
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Appendix

Artificial Neural Network Chip

The artificial ncural network chips were specially designed by the Jet Propulsion
Laboratory (JP1.) for conducting radiation experiments in space onboard a satellite, but
were designed and fabricated without any radiation-hardening techniques or any
protect ion from radiation, A photograph of the actual chip is shown in Figure 8. The
chip was fabricated by VI .S1 Technology incorporated (VT'1) using a 2-micron N-well
CMOS process through MOSIS (MOS Implementation Service). The die size is 7.9
mm x 9.2 mm and is packaged in a ceramic 64-pin package. The chip requires asingle
power supply of 8 volts and consumes less than 80 mW of power.

It contains 32ncuroncells and 532 synapse cells arranged in a partialy
populated (duc to power limitations for space flight) 32 row by 32 column array. A
block diagram of the layout of the artificial neur a network chip is shown in Figure 1
(Chapter 2). The neurons lie along a diagonal in the array. The synapses are placed
where the row number is less than the column number. However, when the column
number is greater than 22, the synapses are placed in every row position except along
the diagonal.

Neuron () (bottom left in Figure 1) can only receive input from an external

source. Neuron 1 aso can receive input externally or fromncuron () through the
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synapse at row 0, column 1. Neurons 2 through 31 receive inputs only from any of the
other neurons through the synapses in their respective columns. The first 22 neurons
each can receive input from as many synapses as the column number that they are
positioned in (i.e., neuron 20, located in column number 20, can receive input from 20
synapses). ‘The last 9 neurons in columns 23 through 31 all have fully connected
feedback circuits and thus have 31 synapses connected to the input of each neuron.

The nature of the neural network chip is primarily analog for compactness and
low power consumption, with the digital portion only playing a supporting role. The
major analog components arc the neurons, synapses, and anoutput buffer. The major
digital components are the static memories for storage of synaptic weight within each

of the 532 synapses.

A.1 Neuron

The neurons are nonlinear transimpedance amp] ifiers. The characteristics of an
operational amplifier resembles asigmoidal function and thus is a natural circuit for a
neuron. A block diagram of the neuron is shown in the upper right corner of Figure 2
(Chapter 2). Each ncuron outputs a voltage which is a sigmoidiil function of its input
current. A negative input current forces the neuron’s output high, and a positive input
current forces the output low.

The neuron (based on a former design by JPL. [1])is a typical current summing

circuit where the input controls a differential amplifier which controls a current
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feedback circuit. Figure 9 shows the circuit schematic of the variable-gain, sigmoidal
neuron. The current feedback circuit is voltage controlled, and outputs a negative
current when given a high input voltage, and outputs a positive current when given a
low input voltage. The ncuron's current input is connected to the non-inverting input
of the differential amplifier. The inverting input is connected toa constant reference
voltage of 4 volts, chosen to be the optimum current summing voltage for the synapse
outputs and midway between ground and Vdd. I the input current is positive, the
input voltage will rise slightly, and the differentialamplifier's output voltage will rise
sharply and produce a negative feedback current to "cancel out” the positive input
current.  When this is achieved, (he system is in equilibrium. The operation for a
negative input currentiscorrespondingly equivalent.

The differential amplifier and current fecdback circuits have high gain so that a
few millivolts change on the input will produce a few hundred microampere of
feedback current. Thisallows the input voltage to remain constant within a few
millivolts of the reference voltage, as long as the input current is within the operating
range (about +/- 500” pA). The consistency of input voltage allows the synapses to
reliably output a current extremely close to the current that they are programmed for.

The ncuron's output voltage stageis asimple circuitthatwill output a voltage
which is a sigmoidal function of the inputcurrent. The voltage output circuit consists
of p-FE'T and n-FET current mirrors with their drainstied together which mirror the

current sources used to feed back current to the neuroninput. The drains of these FET
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devices are also tied to a variable impedance circuit whose function is to control gain or
the shape of the neuron’ s transimpedance function.

If the variable impedance circuit is set to have a high impedance, the
transimpedance function will have a very high gain, and the slope in the region where
the input current is near zero will be very steep. Thus, it will tend to quickly approach
the high asymptote for a negative input current and the ncgative asymptote for a
positive input current. The gain control circuit is controlled by an externally biased
current mirror which is common toallthe gain control circuits in all of the neurons. If
a high current (-100" pA) is applied to this current mirror, then the gain control circuit
connected to the neuron output will havea low impedance, and thus the
transimpedance function of the neuron will have a more gradual slope in the operating
range (+/- 100 pA). In practice, the gaincontrol is initially adjusted to obtain an
output characteristic suitable to the application, and then fixed at this optimum setting.

A voltage to current converter is provided for each row to convert the neuron
output voltage to current input for the synapses. This is shown in Figure 10 as part of
the synapse circuit schematic. The output voltage of the neuron controls a current into
a cascode current mirror which generates currentmirror biases for the synapses in that
row. Thus, the neuron in cach row control s an input current Circuit for the synapses in
that row. When the voltage output of the neuron is high (above 3 n-FET thresholds),
there will be sufficient current input for the synapsesinthat row to multiply. The

higher the neuron output voltage, the more current that will be available for the
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respective synapses. On the other hand, if the neuron voltage output is low (below 3 n-
FET thresholds), there will be virtually no input current to be mirrored, and none of the

synapses in that row will output significant current.

A.2 Synapse

The synapse circuit consists of a 7-bit multiplying digital to analog converter
(MD AC)and a 7-bit digital memory. This circuit outputs a binary weighted multiple of
its analog input current. ‘The input current coining from the neuron in that row is
multiplied by the stored digital weight (integer factor between-63 and +63). The 7-bit
digital memory, consisting of 7 static latches, provides programmable weight storage
andisrandomly accessible. The upper left corner of Figure 2in Chapter 2 shows a
block diagram of this synapse. A circuit schematic of this programmable 7-bit synapse
isshow in Figure 1 (). This design is amodificd version of a previous JPL. synapse
design [2].

Multiplication is accomplished by conditionally scaling the input current by a
series of current mirror transistors. Ior each current mirror, a pass transistor,
controlled by one bit of the digital word, conditionally alows current to be placed on a
common summation line. The bits inthe digital word from the lowest significant bit
(1.S13) to the most significant bit (MSB) are connectedto 1, 2., 4, 8, 16, and 32 current
mirror transistors respectively, so that the input current is scaled by the appropriate

amount. The resulting summation current is unipolar. Ilowever, a p-FET cascode
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current mirror, controlled by the seventh bit of the digital word, determines the
direction of the output current, such that two quadrant multiplication is accomplished
(+/- 64 levels). A negative weight value progran lined into the synapse causes it to have
a positive output current (outputs current through its p-FETs) while a positive weight
value causes the output to be negative (through the n-FTs to ground).

A synapse may also be described as a transconductance amplifier, in that it
effectively takes a voltage output from aneuron and amplifies it by a conductance
(weighted by the digital value stored in the synapse's memory) to produce an output
current, In this case we consider the voltage to current converter to be part of the
synapse instead of the neuron.

Each synapse’s current output is an input to a neuron in its column. Thus, there
isasingle current summing node in each columnto which all the synapses are directly

connected, and that node is also connected to the input of the neuronin (hat column.

A.3 Output Buffer

The output buffer is a wide-range transconductance amplifier configured as a
unity-gain follower [3]. The output voltage closely follows its input voltage and
provides sufficient driving power to interface the neural network chip to other chips. It
can drive a load of approximately 1 ()() kilo-chms. figue 11 shows the circuit

schematic of the output buffer.
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The input to the output buffer is the voltage from one of the 3 1 neurons
selected by ananalog multiplexer. A special circuit designed into the output
multiplexer allows the output buffer to be tested separately by feeding its input with an
external] y supplied voltage. 'The single output buffer and multiplexer design was
utilized to simplify the interface between the chip and its external circuitry by reducing
the number of separate output signals. The output buffer operated over the entire
voltage range of the neuron outputs, except when the voltage approached within a volt
of the power supply range of () to 8 volts. Below one volt, the buffer slowed down
since the transistors in the circuit began operating in the subthreshold region. The
output voltageis generally below the input voltage throughout the operating range, but
this error was moderately increased when the input voltage was within one volt of the
positive power supply. Since all of the ncural network's output must go through this
buffer, it is the most critical component (representing a single point failure mechanism

for the chip).
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Figure 8 Photograph of the Artificial Neural Network Chip
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Figure 10 Circuit Schematic of the Programmable 7-bit Synapse
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